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In this lecture, we will talk about the topic of control and Linear Quadratic Regulator (LQR). We
will see that LQR control is the counterpoint to Kalman filter estimation and explore the connections
between the two. We will study the deterministic LQR now.

1 Problem Formulation
The model of the dynamical system is described as follows (discrete-time case):
Tiy1 = Az + Buy, (1)

Eq. (1) is a standard state-space model where x4 € R™ and x; € R™ are the system states at times
t + 1 and ¢, respectively. u; € R™ is the system input at time ¢, A € R™", and B € R"*™. The
initial state is xg. This lecture considers a system without noise; in future class we will cover the
case with noise as well.

Goal: The goal is to find a sequence of inputs ug, u1,...,uny—1 to minimize the cost function J in
the following optimization problem:
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J = minimize (2] Qry + uf Ru) + z8Qran (2)
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under the assumptions that:

Q=0, R~0, Qf=0]

The reason for these assumptions is that we want the minimum possible cost to be zero. We are
allowing @) to be positive semi-definite since we do not have to penalize all of the states. However,
we want R to be positive definite since we want to penalize every single input we use.

Note: There is a misconception that the LQR is somehow better than other classical controllers,
such as the PID control, mainly because it is referred to as an optimal method. However, the reality
is you still have to design the controller. In PID control, we design the controller by tuning the
control gains directly. So if we have a good understanding and intuition of how the various gains
affect the system performance, we can get the performance we want out of a PID controller. In LQR,
we instead design the cost matrices @, R, and ;. We can think of them as trade-off parameters
(penalizing large state vs. penalizing large input), and we solve the control problem in an indirect
fashion, but it is still a design problem. This does not mean that the LQR is superior to PID; they
are just different design methods that require different sorts of intuition about the problem.



Since the problem is just a Least Squares problem, we can rewrite the problem as a quadratic
expression. Then we can take the derivative of the expression and set it to zero to find the solution.
Therefore, we have:
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where z € RWVHDnx1  p e RINHDnxNm 7« RNmx1 G ¢ RIN+Dnxn and g0 € R"*1. Therefore,
we can rewrite the dynamical system and the cost as follows:

z=Fu+ él’o (4)
J=2"Qz+u' Ru (5)
Substituting (4) into (5), we obtain:
J(u) = (Fu+ Gxo)"Q(Fu + Gxo) + u' R, (6)
where
Q R
_ Q _ R
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2 Non-recursive Solution

We can write the equation (6) in the quadratic form:
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The optimal u and J can be obtained as
i = —(FTQF + R) "' FTQGuy (8)
J. = 21(GTQG — GTOF(FTQF + Ry FTOG)x, (9)

Note: In general, the problem can be time-varying. For example, the matrices A, B, @, R, and
Q¢ can be time-varying, and everything about the above solution still works. The only exception

is some formulas become more complicated. For example, in (3), instead of A¥zq we would have
Ap_1Ap_2--- A1 Agzo.



There are two main issues with the non-recursive solution. The first issue is that it is not scalable.
At every timestep, the relevant matrices such as F' grow, and we must solve ever-growing systems
of linear equations. This is similar to the issue with the non-recursive Kalman filter solution, where
it did not make sense to solve a large least squares problem at every timestep.

There is a better way of writing the solution where we can write each decision as some constant
gain multiplied by the current state. This approach benefits from additional robustness in practical
implementations because it tends to correct cases where there is noise in the states. We will see
this phenomenon in more detail when we study the stochastic LQR problem later.

3 Recursive LQR using Dynamic Programming

Now we are going to derive the recursive solution to LQR. There are several ways of deriving the
recursive solution, and we will use dynamic programming since we will also use dynamic program-
ming in the future. We will work our way back in time and pretend we are only one step away
from the end horizon. We now will define a function called the value function (also known as the
cost-t0-go):

N—-1
Vi(2) := minimize E (CC;FQIt + UIRUt) + l”LQfo
Uy s UN —1 Pyt (10)

st. xp =2z and
xt+1:Amt+But for t=k,...,N—1

The value function is a function at every time step, and instead of starting at time zero, it starts at
time ¢ = k. The only decisions we need to make are each k all the way to N — 1, and the function’s
argument is actually our state at time k. We are trying to find Vy(zo); therefore, the larger the k
gets, the easier the problem is in the sense that fewer decisions have to be made. At the terminal
timestep, there is no decision to make. We have:

Vn(z) = zTsz (11)

Now we will solve for Vj in terms of Vi1 and so on. We will work our way back starting from
k = N — 1 until we get to zero, which will solve the problem. So to do this, we take equation (10)
and pull the first stage cost out of the sum:

N-1
Vi(z) = min minimize (ngxk + u} Ruy + Z (z] Qx4 u] Ruy) + xLQf:UN> (12)

Uk Uk415-UN-1 =kt 1

N—-1
= min (:p{@xk + u} Ruy, + minimize E (z] Q4 u] Ruy) + x}—VQfJ:N>
Uk U415+ UN -1
t=k+1
Now to make things a bit easier, we give u; a new name, i.e., w, since we are going to optimize over

this one separately. Now we can rewrite the Eq. (12) as

N-1
Vi(z) = min (zTQz +w' Rw + minimize Z (z] Qi + u] Ruy) + a:]TVQfo> (13)
w Uk+15UN—1 =kt 1

Viet1(Az+Buw)



Therefore, we can write the following recursive formula (the Bellman equation):
Vi(z) = min <ZTQZ +w T Rw + Viy1(Az + Bw)> (14)

Suppose Vi(z) = 2T Pyz (V is quadratic). This is true for k = N, so we will use induction to show
that if it’s true for k£ + 1, it is also true for k.

Vi(z) = min <ZTQz +w" Rw + Viy1 (Az + Bw)) (15)
= min (zTQz +w'Rw + (Az + Bw) Py (Az + Bw))

—min [ |7 "[ATPA+Q  ATPRB 2
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So now we can obtain the optimal decision and the optimal value as follows:

w, = —(B"Py 1B+ R)"'BTP, Az (16)
Vi(2) = 2" (ATPiyA+Q— AP 1B(B"P 1B+ R)"'BTP 1 A) 2 (17)
Py

So we started with a quadratic function of z, i.e., equation (11), and ended up with another quadratic
function of z. If we continue this approach, we will obtain quadratic functions of z for every step.
So we can get all the way back to time zero. Therefore, to formalize this, we define:

Vi(2) = 2T Pz (18)
Now we can formulate the recursive update formula as

P.=A"P, A+Q—- AP, \B(B"P,..B+R)"'B"P, A (19)

ur = —(B"Ppy1B+ R) BT Py Ay

K (LQR Gain)

So the optimal policy (LQR optimal policy) is u; = K;x; and the cost-to-go is V;(2) = 2T P;z.

Note: The matrices P, can be computed ahead of time (without knowledge of the future states).
Therefore, we can pre-compute our optimal policy K;. Of course, the optimal actions u; will still
depend on our current state x;.

Note: If we have xy = 0, i.e., we start at zero, then the optimal cost is zero because the optimal
policy will be to do nothing forever, and then the state will stay at zero, and we will incur zero
cost. However, if we pick an xg that is not zero, then decisions are going to be made that bring
the states down asymptotically to zero over time. The relative weight that we place on = versus
u has to do with the relative size of Q and R. If R is large, it will be expensive to use a large wu.
Therefore, we would be more inclined to use a very small u and just let x go to zero on its own if
the system is stable. If R is very small, in other words, it does not cost very much to take action,
we might take significant actions to drive the state x to zero rapidly, which incurs a higher cost, so
it is a trade-off.



4 Comparison to Kalman Filter

In this section, we compare the recursive LQR with the Kalman filter. The recursive formulation
for the Kalman filter was:

E0 = Ea:

Sip1 = AS AT+ W — AXCT(C,CT + V) Tloxn AT (20a)

L= —AxCT(CsCT + V)
If we compare (19) to (20), we realize that the solution to the LQR problem and Kalman filtering
problems are the same, provided we map the parameters as follows:

(A,B,Q,R,K,P) +— (AT,CT,W,V,LT, %)

LQR Kalman Filter

Also, time flows backwards for LQR and forwards for the Kalman filter iterations.

5 Steady-State LQR

Figure 1: Comparison between Kalman filter and LQR

Fig. 1 shows the steady-state Kalman filter and the steady-state LQR. We can see that because
initially, each measurement that we get gives us a lot of new information; as we move forward in
time, we accrue more and more measurements. However, the measurements that we observed from
a long time ago are less relevant since they were measurements of where the state was a long time
ago. The state has since moved, and a lot of noise has been added in the meantime. So if we have
gone far enough in time, all that matters is the new measurements that come in, and we can ignore
the ones that are very far in the past. We reach this steady state where the rate of new information
coming in equals the rate of losing information from all measurements.

Now for the steady-state LQR, since we move backward in time, what we get is the opposite of
the steady-state Kalman filter. Therefore, at time ¢t = N, the control gains, and the cost-to-go
might have a lot of fluctuations; however, the farther you go back in time, the more constant they



become. In practice, systems are often run for a relatively long time; therefore, the horizon is always
infinitely far away. So it makes sense to use the steady-state LQR solution directly.

Now recall that the error dynamics (A + LC') were stable with the Kalman filter. Similarly, since
the system dynamics are as follows:

T4l = Az + Buy (21)
Ut = K!Et (22)

we can form the closed-loop equations by eliminating u:
Ti+1 = (A + BK)IL’t (23)

with the LQR, the counterpart (A + BK) is stable. The Lyapunov equation, therefore, can be
obtained as
(A+ BK)"P(A+ BK) + (Q + K"RK). (24)

Note: With the Kalman filter, the steady state can be reached very fast, and it is common to
compute the steady-state Kalman filter and use that from the beginning. Even though the estimates
are not optimal initially, they will become optimal quickly. Therefore, we can ignore the estimates
that we were getting at the beginning. With LQR, the same is true. We will often compute the
solution to the Riccati equation and determine the optimal steady-state cost from the start and
implement that from the beginning. The difference is that with LQR, this procedure is correct from
the beginning, and if the horizon is always infinitely far away, then it is going to be correct forever.
Now similar to what we had for the steady-state Kalman filter, the Riccati results for steady-state
LQR are as follows:

If Q= 0and R > 0, (A, B) stabilizable and (A, @Q)) detectable, then the Algebraic Riccati Equation
(ARE)
ATPA-P+Q—-A"PB(B'"PB+R)"'B"PA=0

has a unique stabilizing solution P > 0, meaning that if we define K = —(BTPB + R)"'BTPA,
then A + BK is Schur-stable. Finally, iterating the Riccati recursion converges to the stabilizing
solution, so tlim P =P.
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6 MATLAB Commands

Relevant Matlab commands for estimation and control problems.

idare(A',C',W,V)
dlyap(A,W)

o°

steady-state covariance for the Kalman filter
s steady-state covariance when there are no measurements (L=0)

o

idare(A,B,Q,R) % stabilizing solution to the ARE
dlyap(A',Q) s infinite-horizon cost matrix for the open-loop (K=0)
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